

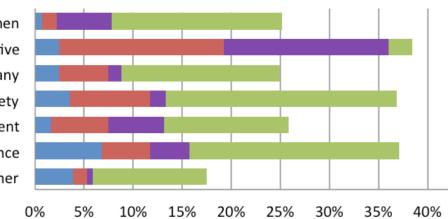
Technological Innovations: from active to passive gears

Presenter: Chris Smith - HCMR

Options for Mitigation

Technological Mitigation to Reduce Benthic Impacts

- Moving from active to passive gears Potentially involves aspects of:
 - Reducing effort
 - Reducing gear footprint
 - Reducing gear impact on seabed
 - Increasing target species selectivity
- Investigations of the viability of traps and pots in some trawl fishing areas



From active to passive gears

Stakeholder Preferences

Fishermen Fishermen representative Switch from trawl to Other private company traps areas/seasons Civil society Government Science Other Mediterranean Sea 0% Fishermen Other private companies Government Civil society Science

Baltic Sea

Reduce trawl sweep lengths

Lighter mussel dredges or pelagic trawl doors

Better electronic monitoring systems

Switch from trawl to traps in areas/ seasons

From: Soma et al. (in prep). Stakeholder perceptions in fisheries management: Integration of sectors with benthic impacts

BENTHIS

Other

0%

5%

10%

Accept new otter boards
Increase net mesh size
Switch from trawl to traps in areas/ seasons

20%

25%

30%

35%

15%

From active to passive gears

3 Case Study Areas

- Baltic Kattegat: Denmark and Sweden
 - Nephrops creel fishery compared to trawl fishery
- Aegean Sea Greece
 - Trials of fish and shrimp pots/traps
- Ionian Sea Italy
 - Nephrops trap trials

Nephrops Creels in the Baltic

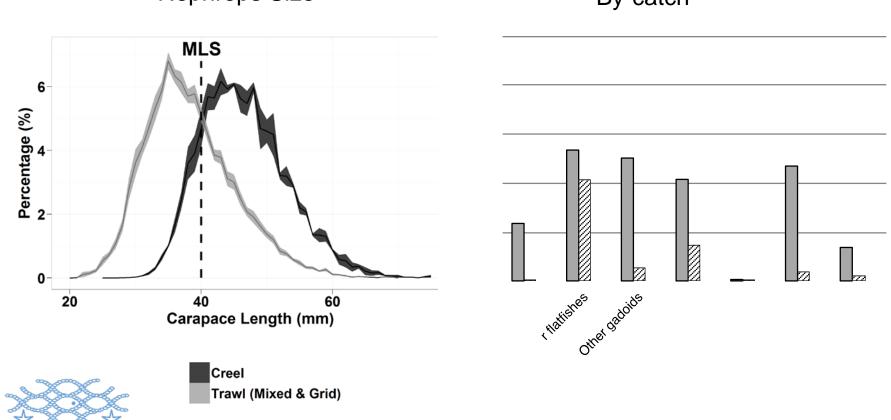
Initial creel fishery experiment:

- Camera monitoring indicated that the creels sank down into the sediment;
- The bait attracted Hagfish which forcing some Nephrops escapement;
- Catch rates about 180 g/creel per day;

Nephrops Creels in the Baltic

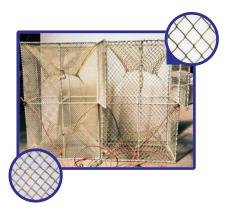
Initial creel fishery experiment:

- Preliminary CBA: Daily profit about 3800 DKK per day for small vessels with two persons on board;
- CBA: Comparable trawl fishery for trawlers < 12 m about 3000 DKK per day
- Estimated profitability study shows good profitability especially in 2-man vessels, although larger Danish trawlers have much higher profitability.



Nephrops Creels in the Baltic

Catch comparison of creels and trawls

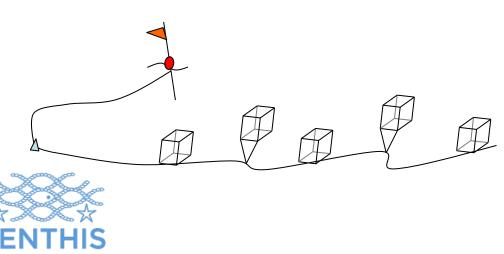

Nephrops Size

By-catch

Traps/Pots in the Mediterranean

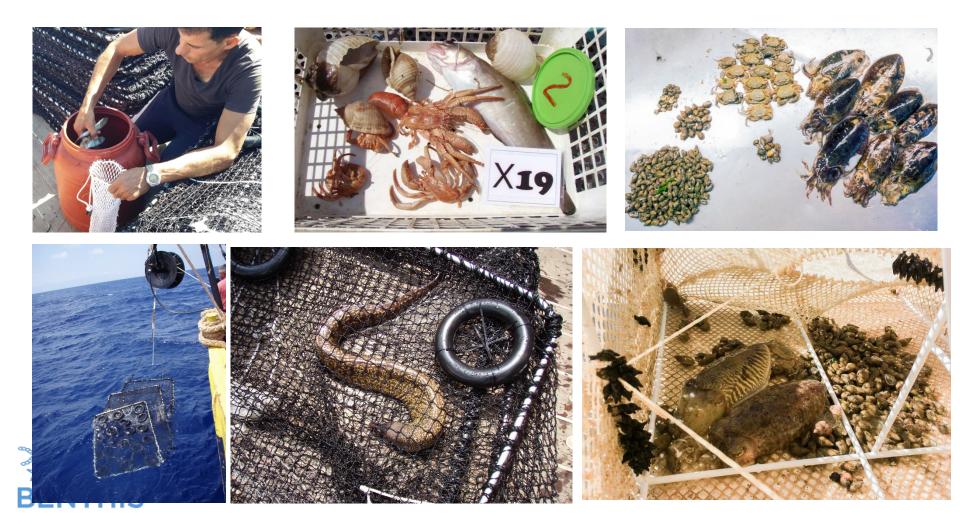
Gears:

- Norwegian Cod Pot
- Mediterranean Kurtos
- Greek Shrimp/Nephrops Trap
- Croatian Nephrops Creel

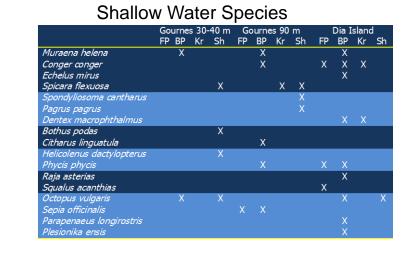


Traps/Pots in the Mediterranean

Gears:


- Baited traps/pots (oily fish)
- Long line deployment systems
- Deployed depths: 10, 30-40, 80-90, 200, 420 m
- Local trawl comparisons
- Fished about 1200 traps/pots

Traps/Pots in the Mediterranean

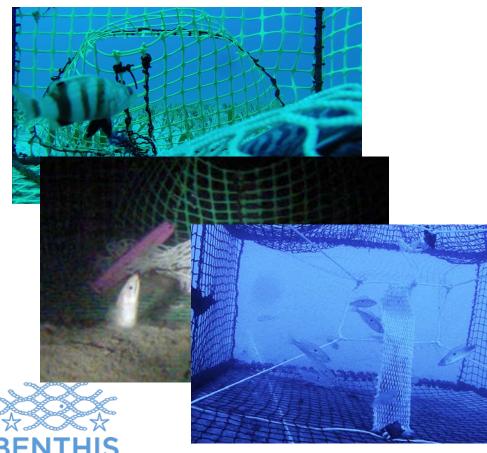

Catches – mixed, generally poor

Traps and Pots in the Aegean

Catches – mixed:

- Typically <10% of the local trawl species
- Very low catch of target species
- More spent on bait than value of catch
- Shrimp pot in the Nephrops ground had best performance

Deep Water Species


	Evoikos 440 m			Pagasitikos			Mytılını		
					90 m			440 m	
	BP	Kr	Sh	BP	Kr	Sh	BP	Kr	Sh
Conger conger				Х	Х		Х		
Trisopterus capelanus				Х		Х			
Spicara flexuosa						Х			
Serranus hepatus						Х			
Helicolenus dactylopterus							Х	Х	Х
Scyliorhinus canicula									Х
Octopus vulgaris				Х	Х				
Nephrops norvegicus						Х	Х		Х
Parapenaeus longirostris				Х		Х			Х
Plesionika martia									Х
Squilla spp.				Х	Х	Х			
Calappa granualris									Х
Goneplax rhomboides						Х			
Liocarcinus depurator				Х		Х			

Traps and Pots in the Aegean

Video – mixed activity:

In shallower waters many small individuals – few recovered

Fewer large target species

Experimental Conclusions

Baltic Kattegat creel experiments:

 Creels viable and ecological sustainable alternative to trawl fishery for certain vessels in certain areas to reduce benthic impacts. Highly selective and low bycatch.

Mediterranean pot/trap experiments:

- Viability was questionable might only be viable in an artisanal fishery.
- Potential issues with correct mesh size.
- If the area is a prior trawl ground, before trap fishery may be viable, areas may need a recovery plan.

Conclusions

But what do we know about traps:

- They have very low impact on the seabed (swept area, digging/scraping potential).
- Selective for species and size of species, high quality.
- Discarding is low.
- Applicability seems to be very area/season/fishery specific.
- Can have interference issues from other species.
- Technical Measures: questions on how many traps should be allowed for a single fisherman, how many trapping fishermen should be allowed in an area, mesh size in multi-target species.

Conclusions

Overall Message:

- Trapping may be a good mitigation technique for reducing impacts, but it will be very area/season/fishery specific.
- 2. A trapping vessel will not have the same economic efficiency as a large trawler fishery. Therefore on a local fishery level, trapping is unlikely to produce similar levels of catch.

